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1. Introduction

The problems of phase change from liquid to solid

or vice versa have attracted considerable attention in

view of both their theoretical interest and their practi-

cal applications. Since the work by Stefan [1], many

authors have studied the phase-change problems with-

out ¯uid ¯ow [2,3], and with forced convection [4,5] or

natural convection [6,7] in the melt. In most of the

works with forced convection, the rate of convective

heat transfer from the liquid side of solid±liquid inter-

face was assumed to be known, and the temperature

distribution in solid and the location of the solid±

liquid interface were determined [4,5]. It is evident,

however, that the phase-change process can be a�ected

by the transient development of the temperature distri-

bution in liquid and vice versa. Recently, Yoo [8,9]

considered the transient behavior of the temperature

distribution in both solid and liquid phases and the

freezing rate in the rotating-disk±revolving-¯uid sys-

tem. On the other hand, Rangel and Bian [10,11] inves-

tigated an inviscid stagnation-¯ow solidi®cation

problem, and Bian and Rangel [12] studied a viscous

stagnation-¯ow solidi®cation problem. Both of the

rotating-disk±revolving-¯uid systems and the stag-

nation-¯ow solidi®cation problem have forced ¯uid

¯ows toward the solid±liquid interface, and accord-

ingly many similar characteristics were found.

In this study, we consider the inviscid stagnation-

¯ow solidi®cation problem. The ¯uid with temperature

higher than its freezing temperature ¯ows toward the

cold substrate (Fig. 1). Initially (t=0), the ¯uid is kept

at a uniform temperature (TH) higher than the freezing

temperature of ¯uid (TF). For t>0, the temperature of

the substrate is suddenly lowered to TC (TC<TF) and

maintained constant. As a result, solidi®cation occurs

at the surface of the substrate and the solid grows with

time. If there is no ¯uid ¯ow, then this problem

becomes the well-known Stefan problem with

Neumann's solution [1]. Recently, Rangel and Bian

studied this problem with numerical method [10], and

with the method of instantaneous similarity and quasi-

steady approximation [11], and showed that the solidi-

®cation front grows asymptotically to a ®nite maxi-

mum value as time goes to in®nity.

We obtain analytic solutions at the initial stage of

freezing and the ®nal equilibrium state. The initial-

stage solution is obtained by expanding it in powers of

time (tW1), yS,L(t, Z )=y 0
S,L(Z )+y 1

S,L(Z )t+� � � and d 2

(t )=b0t+b1t
2+� � �, and the ®nal equilibrium state is

determined from the steady-state governing equations.

In the expression of the temperature distribution and

the solid thickness at the initial stage, the terms

y 0
S,L(Z ) and b0t represent the Neumann's solution in

the absence of the ¯uid ¯ow, and the terms y 1
S,L(Z )t

and b1t
2 are created by the ¯uid ¯ow. We can clearly

see the e�ect of the stagnation ¯ow on the pure con-

duction problem of Neumann [1] from the solutions of

the initial stage and the ®nal equilibrium state.

The main physical quantities in the present problem

are the growth rate of solid and the heat transfer rate

at the surface of the solid and the liquid side of solid±

liquid interface. We obtain dimensionless governing
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Nomenclature

A potential ¯ow strain rate
CS speci®c heat of solid
erf(x ) error function

erfc(x ) complementary error function, 1ÿerf(x )
K thermal conductivity
KR ratio of thermal conductivity, KS/KL

L latent heat
Log(x ) Log10(x )
QS(t ) heat ¯ux at the surface of solid, ÿKS[@TS( y, t )/@y ] at y=0

QL(t ) heat ¯ux at the liquid side of solid±liquid interface, ÿKL[@TL( y, t )/@y ] at y=X(t )
Qsteady steady-state heat ¯ux, QS(t )=QL(t )=Qsteady at t41
Ste Stefan number, CS(TFÿTC)/L
t time

T temperature
TC cold temperature of solid surface
TF freezing temperature of liquid

TH hot temperature of liquid
X(t ) thickness of solid phase
Xeq solid thickness at equilibrium state

y axial coordinate

Greek symbols
a thermal di�usivity
aR ratio of thermal di�usivity, aS/aL
d(t ) dimensionless solid thickness
deq dimensionless solid thickness at equilibrium state
z dimensionless axial coordinate,

�����������
A=aL

p
y

Z transformed coordinate, z/d(t )
yL dimensionless temperature in liquid region, (TLÿTH)/(TFÿTH)
yS dimensionless temperature in solid region, (TSÿTC)/(TFÿTC)

yR temperature ratio, (THÿTF)/(TFÿTC)
r density
s growth parameter in Neumann problem
t dimensionless time, At

Subscripts
L liquid
S solid

1 in®nity

equations which are expressed with three dimensionless
parameters of yR/KR, Ste, and aR, and the character-

istics of the solidi®cation process for all the variables
are elucidated.

2. Analysis

2.1. Governing equations

We consider the inviscid stagnation ¯ow impinging

on a cold substrate (Fig. 1). We assume that the ther-
mophysical properties of solid and liquid phases are

constant, and the density change of the material upon
freezing is neglected so that there is no ¯uid ¯ow
induced by the volumetric change in the phase-change

process. The governing equations are described as fol-
lows [11]:

@TS

@ t
� aS

@ 2TS

@y2
at 0<y<X�t� �1�
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Fig. 1. Stagnation ¯ow ahead of a solidifying interface.

@TL

@ t
ÿ 2A� yÿ X�t��@TL

@y
� aL

@ 2TL

@y2
at y > X�t�: �2�

At the solid±liquid interface y=X(t ), where the change
of state occurs, the energy balance is maintained:

KS
@TS

@y
ÿ KL

@TL

@y
� rL

dX

dt
at y � X�t�: �3�

Additional boundary conditions are

TS � TC at y � 0, TS � TL � TF at y � X�t�

TL � TH at y41:
�4�

In addition, prior to the onset of solidi®cation, the

temperature of liquid is uniform and is equal to
TH(>TF). The heat ¯uxes at the surface of solid (QS)
and the liquid side of solid±liquid interface (QL) are
de®ned as

QS�t� � ÿKS

�
@TS� y,t�
@y

�
at y � 0 �5�

QL�t� � ÿKL

�
@TL� y,t�
@y

�
at y � X�t� �6�

QS(t ) and QL(t ) are of the same value,
QS(t )=QL(t )=Qsteady, at t41.

Introducing the following dimensionless variables

yS � TS ÿ TC

TF ÿ TC

, yL � TL ÿ TH

TF ÿ TH

, t � At, z �
������
A

aL

r
y

KR � KS=KL, aR � aS=aL, yR � TH ÿ TF

TF ÿ TC

,

Ste � CS�TF ÿ TC�
L

�7�

governing Eqs. (1)±(4) are written as

@yS

@t
� aR

@ 2yS

@z2
at 0<z<d �8�

@yL

@t
ÿ 2�zÿ d�@yL

@z
� @ 2yL

@z2
at z > d �9�

@yS

@z
� yR

KR

@yL

@z
� 1

aR Ste

dd
dt

at z � d �10�

yS � 0 at z � 0, yS � yL � 1 at z � d�t�,

yL � 0 at z41
�11�

where

d�t� �
������
A

aL

r
X�t� �12�

denotes the dimensionless solid thickness. It is assumed
that d(0)=0.

It is to be noted that yR/KR is one parameter in the
dimensionless governing Eqs. (8)±(11). It is because the
heat transfer rate is determined by Fourier's law of
heat conduction.

Let us introduce the following coordinate transform-
ation to ®x the moving boundary of the position of
solid±liquid interface z=d(t ) at Z=1.

Z � z
d�t� : �13�

Eqs. (8)±(11) are transformed as

d2
@yS

@t
ÿ Z

2

dd2

dt
@yS

@Z
� aR

@ 2yS

@Z2
at 0<Z<1 �14�

d2
@yL

@t
ÿ Z

2

dd2

dt
@yL

@Z
ÿ 2�Zÿ 1�d2 @yL

@Z
� @ 2yL

@Z2
at

Z > 1

�15�

@yS

@Z
� yR

KR

@yL

@Z
� 1

2aR Ste

dd2

dt
at Z � 1 �16�

yS � 0 at Z � 0, yS � yL � 1 at Z � 1,

yL � 0 at Z41:
�17�

2.2. Initial stage of freezing

At the initial stage of freezing (tW1), yS,L(t, Z ) and
d(t ) can be expanded in powers of time [8]:
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yS,L�t, Z� � y0S,L�Z� � y1S,L�Z�t� � � � �18�

d2�t� � b0t� b1t2 � � � � : �19�

Substitution of Eqs. (18)±(19) into Eqs. (14)±(17)
yields the equations for O(t 0)

d2y0S
dZ2
� b0

2aR

Z
dy0S
dZ
� 0 at 0<Z<1 �20�

d2y0L
dZ2
� b0

2
Z

dy0L
dZ
� 0 at Z > 1 �21�

dy0S
dZ
� yR

KR

dy0L
dZ
� b0

2aR Ste
at Z � 1 �22�

y0S�0� � 0, y0S�1� � y0L�1� � 1, y0L�1� � 0 �23�

and O(t ) equations

d2y1S
dZ2
� b0

2aR

Z
dy1S
dZ
ÿ b0

aR

y1S � ÿ
b1
aR

Z
dy0S
dZ

at 0<Z<1 �24�

d2y1L
dZ2
� b0

2
Z

dy1L
dZ
ÿ b0y

1
L � ÿ�2�Zÿ 1�b0 � b1Z�dy

0
L

dZ

at Z > 1

�25�

dy1S
dZ
� yR

KR

dy1L
dZ
� b1

aR Ste
at Z � 1 �26�

y1S�0� � y1S�1� � y1L�1� � y1L�1� � 0: �27�

The solution of Eqs. (20)±(23) for O(t 0) is the
Neumann's solution [1].

y0S�Z� �
erf�sZ�
erf�s� �28�

y0L�Z� �
erfc�s �����

aR
p

Z�
erfc�s �����

aR
p � �29�

exp�ÿs2�
erf�s� ÿ

yR
�����
aR
p

exp�ÿs2aR�
KR erfc�s �����

aR
p � �

���
p
p

s
Ste

�30�

b0 � 4s2aR: �31�

The solution of Eqs. (24)±(27) is found with a homo-
geneous solution of the form

uS�Z� � Z2 � 1

2s2
�32�

uL�Z� � Z2 � 1

2s2aR

: �33�

The solution is

y1S�Z� � ÿuS�Z�
�1
Z

b1C1

�
Z4

4
� Z2

4s2

�
� C5

exp�s2Z2�u2S�Z�
dZ at

0RZR1

�34�

y1L�Z� � uL�Z�
�Z
1

C3f �Z� � b1C2

�
Z4

4
� Z2

4s2aR

�
� C4

exp�s2aRZ2�u2L�Z�
dZ

at Zr1 �35�

where

C1 � ÿ 2s���
p
p

aR erf�s� , C2 � 2s
�����
aR
p���

p
p

erfc�s �����
aR
p �

C3 � 16s3a3=2R���
p
p

erfc�s �����
aR
p � ,

f �Z� � Z4

4
ÿ Z3

3
� Z2

4s2aR

ÿ Z
2s2aR

:

The constants b1, C4, and C5 are determined explicitly
by the boundary condition (26), y 1

S(0)=0, and
y 1
L(1)=0. The processes are straightforward and the

detailed equations are omitted for brevity.

2.3. Final equilibrium state

In the Neumann problem without ¯uid ¯ow, the
solid grows continuously with time according to the re-
lation X�t� � 2s

�������
aSt
p

. In the present problem, however,

the forced ¯uid ¯ow toward the solid±liquid interface
restricts the propagation of the thermal boundary
(T=TH) in the liquid, and consequently the system
approaches a ®nal equilibrium state as time goes on.

Eqs. (8)±(11) with @/@t=0 yield the following equi-
librium state:

yS�z� � z
deq

, yL�z� � erfc�zÿ deq�,

deq �
���
p
p
2

KR

yR

:

�36�

The steady-state heat ¯ux is given by
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Qsteady � ÿKS
�TF ÿ TC�

Xeq

at t41 �37�

and the instantaneous heat ¯uxes at the surface of

solid and the liquid side of solid±liquid interface are
expressed as the following equations:

QS�At�
Qsteady

� deq

d�t�
@yS�Z�
@Z

at Z � 0 �38�

QL�At�
Qsteady

� ÿ
���
p
p
2d�t�

@yL�Z�
@Z

at Z � 1: �39�

3. Results and discussion

Once the temperature of the substrate has been low-
ered to TC(TC < TF), the solid grows continuously
with time, and approaches a ®nal equilibrium state.

Fig. 2. E�ect of several parameters on the growth of solid, d 2(t )=b0t[1+(b1/b0)t ] for tW1: (a) e�ect of temperature ratio and con-

ductivity ratio with aR=1 and Ste=0.1; (b) e�ect of Stefan number with aR=yR/KR=1; (c) e�ect of di�usivity ratio with yR/
KR=1 and Ste=0.1.
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The thickness of the solid at the initial stage of solidi®-

cation is approximated as d 2(t )=b0t+b1t
2, and the

equilibrium value is obtained as deq � �KR=yR�
���
p
p
=2.

We can see the e�ect of the ¯uid ¯ow and several par-

ameters, yR/KR, Ste, and aR, on the solidi®cation pro-
cess from the solution of the initial stage and the ®nal
equilibrium state, since d(t ) increases monotonously

with time, and the initial stage is smoothly connected

to the ®nal state.
In the expression of the initial-stage thickness of

solid, d 2(t )=b0t+b1t
2, the ®rst term represents the

pure conduction solution of Neumann and the second
is created by the ¯uid ¯ow. Calculation shows that b1
has negative values in all cases, which reveals that the

Fig. 3. Transient heat ¯uxes at the surface of solid (QS) and the liquid side of solid±liquid interface (QL) for several values of yR/
KR with aR=1 and Ste=0.1: (a) QL(At )/Qsteady; (b) QS(At )/Qsteady.

Fig. 4. Transient heat ¯uxes at the surface of solid (QS) and the liquid side of solid±liquid interface (QL) for several Stefan numbers

with aR=1 and yR/KR=1, and QL for the case with no phase change in the inviscid stagnation ¯ow: (a) QL(At )/Qsteady;

(b) QS(At )/Qsteady.
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¯uid ¯ow toward the substrate always inhibits the sol-
idi®cation process. The e�ect of the ¯uid ¯ow on the

growth of solid can be seen with the expression of

X 2�t� � 4s2aSt�1ÿ j b1=b0 j �At�� �40�

in which the term ÿvb1/b0v(At ) represents the magni-

tude of the e�ect of the ¯uid ¯ow on the pure conduc-
tion problem. The values of b0, ÿb1 and ÿ(b1/b0) as
functions of yR/KR, Ste, and aR are presented in Fig.

2. Fig. 2(a) represents the e�ect of the temperature
ratio and the conductivity ratio on the growth rate of
solid. As yR/KR is increased, the value of b0 decreases;
that is, the growth rate of solid in the pure conduction

state is decreased. However, the value of ÿ(b1/b0) is
increased with increase of yR/KR, which shows that the
e�ect of the ¯uid ¯ow becomes strong as the tempera-

ture (TH) or conductivity (KL) of liquid is increased.
For small Stefan number of Ste < 0.1, the magnitude
of ÿ(b1/b0) has been observed to be linearly pro-

portional to yR/KR [Fig. 2(a)]: ÿ(b1/b0) 1 C(yR/KR).
The approximate values of the constant C at aR=1 are
0.0127, 0.0409 and 0.133 for Ste=0.001, 0.01 and 0.1,
respectively, i.e. C increases with increase of Ste. For

the parameters of Ste and aR, both of b0 and ÿ(b1/b0)
are increased with increase of Ste or aR [Fig. 2(b,c)].
We can see that the e�ect of the ¯uid ¯ow on the

growth rate of solid is increased as yR/KR, Ste, aR, or
the potential-¯ow strain rate A becomes large.
Fig. 3 shows the transient heat ¯uxes at the surface

of the solid and the liquid side of the solid±liquid
interface for yR/KR=0.1, 1 and 10. As yR/KR is
increased, both of QS(t )/Qsteady and QL(t )/Qsteady are

decreased, that is the response time of heat transfer in
both solid and liquid phases is decreased, since the
maximum solid length (deq) that can be grown is in-
versely proportional to yR/KR.

As shown by deq � �KR=yR�
���
p
p

=2, the equilibrium
state is independent of Ste, but the solid grows faster
for larger Ste. Fig. 4(a) represents QL(t )/Qsteady for

Ste=0.01, 0.1, 1, and the case with no phase change.
The unsteady stagnation point heat transfer for viscous
¯uid without phase change was considered at the early

years [13,14]. When phase change is present, QL(t )/
Qsteady is larger than that of the case with no phase
change, and the di�erence is increased, as Ste
increases. When the temperature of the solid is sud-

denly lowered to TC, there is propagation of a thermal
boundary from the solid to the liquid region, but the
¯uid ¯ow toward the solid inhibits the propagation. If

the solid grows more rapidly, the propagation of the
thermal boundary is more strongly inhibited.
Consequently, it tends to restrict the speed of approach

to equilibrium state. On the other hand, Fig. 4(b)
shows that QS(t )/Qsteady is decreased as Ste is
increased, since the growth rate of solid is increased

with increase of Ste, and accordingly the response time
is decreased.

The equilibrium state is also independent of aR [Eq.
(36)], and the solid grows faster for larger aR, as the
case of Ste. And accordingly, the dependency of the

heat ¯uxes on the variable aR shows the same charac-
teristics as that for Ste. It has been observed that the
unsteady heat ¯uxes QS(t ) and QL(t ) are almost

unvarying for the changes in aR and Ste, if aR
Ste=constant; i.e., they are approximately functions of
the parameter aR Ste.

Rangel and Bian [11] studied the inviscid stagnation-
¯ow solidi®cation problem with the method of instan-
taneous similarity and quasi-steady approximation,
and made parametric study with the four variables,

Ste, yR, 1/aR, and 1/KR. From the instantaneous simi-
larity solution valid for small time, they obtained the
solid thickness as X�t� � l

�������
aSt
p

, where l was deter-

mined numerically for each value of time. They calcu-
lated l's for given values of time (t ), and showed
that l decreased as t increased. Comparing it with

the present solution (40), l corresponds to
2s

����������������������������
1ÿ j b1=b0 j t

p
. The fact that l is a decreasing func-

tion of t can be easily seen from the expression of

l�t� � 2s
����������������������������
1ÿ j b1=b0 j t

p
, and the calculated values of

l's for the parameters, Ste, yR, 1/aR, and 1/KR in [11],
with a small time of t=0.1 showed good agreement
with the results presented by them [11]. For large value

of time (t41), Rangel and Bian [11] concluded that
the temperature distribution and the solid thickness
are independent of Ste, while changes in the par-

ameters yR, 1/aR and 1/KR a�ect the long time beha-
vior of the solution. However, the steady-state solution
of Eq. (36) shows that the equilibrium state is a func-

tion of only yR/KR, but is independent of Ste and aR.
The variable aR, as well as Ste, is time-governing par-
ameter of the solidifying process, but does not a�ect
the ®nal equilibrium state.

From the observed results presented above, we can
see that the parametric study for the inviscid stag-
nation-¯ow solidi®cation problem can be made e�ec-

tively with only the two variables of yR/KR and Ste,
although four-dimensionless variables, Ste, yR, aR, and
KR, appear in the problem. This result would help the

parametric study in the numerical computation and
the other problems with di�erent boundary or initial
conditions.

4. Summary

We consider the problem of phase change from
liquid to solid in the inviscid stagnation ¯ow. The

dimensionless governing equations have three dimen-
sionless parameters of yR/KR, Ste and aR. The solution
at the initial stage of freezing is obtained by expanding
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it in powers of time. The equilibrium state is depen-
dent on yR/KR, but is independent of Ste and aR. The
e�ect of the ¯uid ¯ow on the pure conduction problem
can be clearly seen from the solution of the initial
stage and the ®nal equilibrium state, and the character-

istics of the solidi®cation process for all the dimension-
less parameters are elucidated.
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